Fishing for genes via eDNA

Just as steelhead trout migrate from saltwater to freshwater and back, Environmental Sample Processors (ESPs)—first developed by the Monterey Bay Aquarium Research Institute (MBARI) for studies in the ocean—have been getting a lot of use in freshwater over the last five years.

Kevan Yamahara and Doug Pargett install a pump system downstream of a fish trap in Scott Creek. The pump system feeds water to an Environmental Sample Processor to sample the DNA of fish in the stream. Photo © 2019 MBARI/Kim Fulton-Bennett

This spring, MBARI’s ESP team installed an instrument to collect samples of “environmental DNA” from a coastal creek just north of Monterey Bay. Researchers will use these samples to track populations of threatened steelhead trout, endangered coho salmon, and invasive species in the creek.

In the process, they could help revolutionize environmental monitoring and fisheries management nationwide.

The research is a joint project of MBARI and the Monterey Bay Aquarium, with funding from the Arthur Vining Davis Foundations as part of their newly launched Environmental Engagement, Stewardship & Solutions program. The work is being carried out in collaboration with the National Oceanic and Atmospheric Administration (NOAA). It is part of MBARI’s continuing effort to provide scientific data with direct application for ocean and wildlife conservation. Continue reading Fishing for genes via eDNA

The deep impact of microplastic

 

(Clic aquí para leer en español)

There’s a vast ecosystem stretching far below the ocean’s surface — one where the light dims, the pressure mounts, and life takes on forms that can seem downright alien. But even there, a place that seems a world apart from human society, our plastic trash is building up.

Scientists from the Aquarium and MBARI sampled microplastic pollution in the deep waters of Monterey Bay using the ROV Ventana. Photo courtesy MBARI

In the deep sea, it’s a challenge to study where that plastic accumulates and how it affects animals. So scientists at the Monterey Bay Aquarium and our partners at the Monterey Bay Aquarium Research Institute (MBARI) launched an ambitious collaboration.

The resulting study, which examined microplastic in the waters of Monterey Bay, was published June 6 in the journal Scientific Reports.

“We designed this study to answer a fundamental gap in our knowledge of marine plastic once it reaches the ocean,” says lead author Anela Choy, a former MBARI researcher and now a professor at the Scripps Institution of Oceanography in San Diego.

MBARI researchers collected larvaceans and their mucus feeding filters using its remotely operated vehicles. Photo courtesy MBARI.

The research team gathered data by using remotely operated vehicles (ROVs), robotic submarines designed by MBARI engineers, to collect water samples at depths from 200 to 600 meters (about 650 to 2,000 feet).

They also searched for plastic in animals with important roles in the marine food web: pelagic red crabs; and tadpole-like creatures called giant larvaceans, which surround themselves with clouds of mucus that capture food — and, as the researchers discovered, plastic.

“Problems like this are extremely complicated. To try and figure out how to solve them, you need a lot of different tools,” says Aquarium Chief Scientist Kyle Van Houtan, who co-authored the paper with Anela and nine others, tapping fields from physical chemistry to marine ecology. Continue reading The deep impact of microplastic

Counting fish like a BOSS

Counting fish in the ocean isn’t easy—particularly when they swim among jagged rocks and along undersea cliffs hundreds of feet below the waves. To help, the Monterey Bay Aquarium Research Institute has developed a new camera system called the Benthic Observation Survey System, or BOSS.

The BOSS camera design was fine-tuned, including simulated deployment in MBARI’s test tank, before it was placed in the ocean. BOSS photos ©MBARI

A five-foot metal cylinder that features an array of cameras and lights, the BOSS is designed to be lowered from a ship to the seafloor and land upright on rocky terrain. There, it will help scientists survey fish populations using eight high-definition video cameras.

Researchers and policymakers need this technology to find out more about life in the ocean and how to better protect it. MBARI developed the BOSS with input from investigators at Moss Landing Marine Laboratories and The Nature Conservancy.

“The scientists I’m working with are looking at areas that previously were heavily fished out,” explains MBARI staff engineer Chad Kecy, who led the effort to design and build the BOSS. Chad and his colleagues are trying to get a better understanding of how fish populations are recovering in these areas, what species are present, how big they are and where they swim.

Chad likes the challenge of solving problems on a tight timeline. The BOSS had to be built and tested in a matter of months, because the scientists who planned to deploy it already had research trips scheduled on boats that could not wait.

“Now the scientists are busy analyzing all this video they were able to capture with the tool that we developed,” Chad says.

Mary Gleason, science director for The Nature Conservancy’s California Oceans Program and who helped develop the BOSS, says it can fill important gaps in existing data, based on its inaugural voyage: “We showed that we could get 400 video surveys done across 300 miles of coastline during one three-week cruise. So that’s pretty efficient in terms of data quantity.”

Continue reading Counting fish like a BOSS

Julie Packard: Honoring Bill Gates for his work to protect our planet, improve the human condition

The David Packard Award honors business leaders who work to make the planet more sustainable.

Since 2014, the Monterey Bay Aquarium has periodically honored leaders whose activities and achievements embody the qualities of thought and action that my father, David Packard, held dear. These individuals have effectively worked to make the future of our planet surer and more sustainable.

This year, we recognized visionary Microsoft co-founder and philanthropic innovator Bill Gates. Bill has done so much to improve the human condition—by harnessing technology to advance social good, and by launching bold philanthropic initiatives to make lives better around the world and ensure that everyone has the opportunity to live a healthy, productive life.

We honored Microsoft co-founder Bill Gates for his work, as a business leader and a philanthropist, to improve the human condition.

We paid tribute to the scope and the focus of Bill’s thinking and his commitment to using science and technology to improve the future for the people on our planet. It’s a conviction he shares with my father. Because of the extraordinary success of Microsoft, the Gates Foundation has had the resources to tackle some of the largest problems confronting the world, and Bill and Melinda’s vision and strategic approach are yielding extraordinary results.

Our 300 guests at the award dinner—representing Silicon Valley’s most iconic technology company leaders, along with global ocean conservationists and philanthropists—heard from Bill and our award dinner chair, Meg Whitman, during an engaging “fireside chat”. They covered topics from the role technology can play in environmental conservation, to new approaches philanthropy can bring to pressing global challenges, and the importance of optimism. Continue reading Julie Packard: Honoring Bill Gates for his work to protect our planet, improve the human condition

We Are Still In for the ocean

The week of September 10, people from around the world are gathering in San Francisco for the Global Climate Action Summit. Convened by the State of California, the Summit brings together leaders—representing nations, states, cities, companies, investors and citizens—to celebrate climate action, and step up their ambitions to meet the targets set by the Paris Agreement. As part of Monterey Bay Aquarium’s climate commitment, we’re moving to green our own business operations. Here’s how:

Monterey Bay Aquarium has announced a new set of climate commitments: By 2025, we will achieve net-zero carbon emissions and will transition 100 percent of our vehicle fleet to renewable power.

TR18-0710
The Aquarium has committed to achieving net-zero carbon emissions.

“We know that climate change is the single greatest threat to ocean health, and to all humankind,” said Margaret Spring, chief conservation officer and vice president of conservation & science for the Aquarium.

Margaret made the announcement on the stage of the “We Mean Business Action” platform hosted by We Are Still In in San Francisco during the Global Climate Action Summit.

We Are Still In is a coalition of more than 3,500 U.S. businesses, cities, universities, cultural institutions, health care organizations, faith groups, states and tribes that committed to climate action in keeping with the 2015 Paris Agreement, after the federal government announced plans to withdraw from the historic global climate accord.

Continue reading We Are Still In for the ocean

MBARI puts science and technology to work for ocean health

The week of September 10, people from around the world are gathering in San Francisco for the Global Climate Action Summit. Convened by the State of California, the Summit brings together leaders—representing nations, states, cities, companies, investors and citizens—to celebrate climate action, and step up their ambitions to meet the targets set by the Paris Agreement. Climate scientist Heidi Cullen, director of communications and strategic initiatives for the Monterey Bay Aquarium Research Institute, shares some of the studies MBARI has undertaken to understand the impact of climate change on ocean ecosystems.

Heidi Cullen, director of communications and strategic initiatives at the Monterey Bay Aquarium Research Institute

Caring about the ocean means caring about climate change. From increasing ocean acidification to coral bleaching to harmful algal blooms, climate change—caused by the burning of fossil fuels—is having a profound and sometimes deadly impact on our ocean. I am tremendously hopeful that recent advances in science and technology will help us better understand and protect the planet’s largest ecosystem. We rely on it for so much!

At MBARI, engineers and scientists are developing new tools to study and monitor ocean change. Innovative technology is improving the way we access, sample, measure and visualize the rapid changes taking place across the ocean—from the surface down to the bottom of the sea. It is also improving the way we manage ocean resources. I want to share three exciting examples of cutting-edge ocean research happening at MBARI right now. This research is helping us better understand how climate change is already impacting our living ocean, and how we can better protect it in the future. Continue reading MBARI puts science and technology to work for ocean health

Inspiring the teachers who inspire new generations

What can you find in a one-by-one-foot patch of ground? An entire world of information. Just ask Kim Cornfield’s fourth graders. This tiny “quadrat” marked off with sections of PVC pipe, serves as a microcosm of the local environment throughout the year. It’s a great tool for teaching young people about the land, and can even propel students toward bigger things, like devising a campus cleanup initiative—or pursuing a career in the sciences.

By participating in Aquarium Teacher Institutes, educators learn to help their students conduct field research using easy-to-create tools.

Kim, who’s been teaching at the International School of Monterey for seven years, learned about quadrats at a free, week-long Teacher Professional Development Program offered by the Monterey Bay Aquarium. It’s one in a range of programs the Aquarium created to serve teachers from the Monterey Bay region—and beyond. More than 140 instructors participate each year—almost  2,700 since the program’s inception.

For educators, inspiring the next generation of environmental stewards can be invigorating and inspirational. It’s also a lot of hard work. Many teachers say the Aquarium has helped them re-engage and reconnect with students in ways they hadn’t imagined. They return to their classrooms with a new sense of energy and purpose.

Continue reading Inspiring the teachers who inspire new generations

On World Oceans Day, it’s time to protect Earth’s largest habitat

As we celebrate World Oceans Day, it’s too easy to forget about the deep sea. It’s the largest habitat on the planet, and is increasingly threatened by human activities. Monterey Bay Aquarium scientists, and our colleagues at the Monterey Bay Aquarium Research Institute, are working to understand and protect the deep ocean. It’s a big job—and we’ll need your help.

To bring the message about the deep ocean to a wider public, Executive Director Julie Packard and MBARI President and CEO Chris Scholin shared their thoughts about safeguarding the deep sea in an op-ed column published in today’s New York Times.

“The oceans are the largest home for life on our planet and the blue heart of Earth’s climate system,” they write. “We must use them wisely. Otherwise, we risk using them up.”

You can read the full commentary, and their action plan for the deep sea, here.

Untangling the mysteries of deep-sea food webs

Stretching more than two vertical miles from the seafloor to the ocean’s surface, the water column is Earth’s biggest habitat by volume. For researchers trying to untangle its complex, multi-tentacled food web—the way energy flows from one ocean denizen to the next—it’s a vast and challenging realm in which to accomplish this task.

A gonatid squid eats a deep-sea fish. These types of predator-prey relationships were easier to document, leading marine biologists to undervalue the “who eats who” complexity of predation by more delicate gelatinous animals. Photo © MBARI

Recent work by scientists at the Monterey Bay Aquarium Research Institute (MBARI) has revealed whole new layers of predator-prey interactions in the water column, particularly in the often overlooked roles played by jellies and other soft-bodied animals—many of which, researchers discovered, feed on their own kind.

This research is promising, says Anela Choy, the biological oceanographer who led the study, but much more remains to be discovered about deep-sea food webs.

“I wish I knew just how much there was that we didn’t know,” she says. “That’s what keeps us all going.”

New appreciation for jellies

Many feeding interactions in the deep sea are difficult to observe because they take place in total darkness, thousands of feet below the surface, in cold, crushing conditions that test even the capacities of MBARI’s advanced robots. Before the advent of robotic exploration technology, much of what scientists gleaned about food webs was gathered from animals hauled to the surface in nets—or discovered in a predator’s guts.

High-definition video cameras captured this image of a helmet jelly eating two types of prey: a small squid and (on its bell) another species of jelly. Photo © MBARI

One problem with that approach, Anela says, is that squishy animals like jellyfish and other gelata, while among the most prevalent life forms in this ecosystem, almost never make it to the surface intact.

“They’re really hard to capture—that’s the traditional way of studying diet, is to capture those animals and look in their stomachs,” she says. “With a net, they often immediately break apart. “If they are the predator of interest, we cannot ascertain their gut contents this way because they are very damaged.”

Obstacles to overcome

There are other obstacles to understanding food webs. The traditional way of studying diet is to capture an animal and look into its stomach to see what prey have been eaten. Anela notes that gelata digest very quickly and thus are often missed with diet work.

MBARI’s remotely operated vehicles, like the Doc Ricketts, have recorded video documenting hundreds of feeding interactions in the deep sea. Photo © MBARI

So Anela and her MBARI co-authors, Steve Haddock and Bruce Robison, tried a different approach.

The high-definition cameras on MBARI’s diving robots have recorded thousands of deep-sea animal observations since 1989. All of the video has been rigorously archived to reflect its subject, location, time, depth and even water temperature and other physical parameters. From this footage, Anela and her colleagues gleaned a wealth of information: 743 documented instances of undersea creatures eating, being eaten, or having just fed.

(Anela singled out two video technicians at MBARI, Susan von Thun and Kyra Schlining, who “watched every single hour of videotape from every midwater dive” to build an unprecedented underwater feeding dataset.)

Hundreds of feeding observations

From the video, the team tallied 242 unique kinds of predator-prey relationships. Many involved jellyfish and other soft-bodied animals, which don’t seem to particularly mind having a robot watch them eat, and which are often transparent, meaning the researchers could easily peer inside their bodies to view their most recent meal.

This complex food web shows groups of animals (indicated by different colored circles and lines) that were observed eating each other during MBARI remotely operated vehicle dives. Thicker lines indicate more commonly observed predator/prey interactions. Illustration © 2017 MBARI

In their published study, they documented the complexity of predator-prey relationships they uncovered from this treasure trove of data.

A key illustration from the study draws lines showing predator-prey interactions between 20 different functional groups seen feeding on each other in the footage, from fish to crustaceans to jellies to cephalopods like squid. Fittingly, the resulting tangle of colorful who-eats-whom lines resembles a jellyfish.

“Jellyfish get kind of a bad rap,” Anela says, noting that some biologists cast them as nuisances—trophic dead ends that don’t feed back into the food web.

“This shows something totally different,” she says.” It shows they’re central parts of deep sea ecosystems, with really diverse diets and serving as both predators and prey.”

One species of jellyfish was observed eating 22 different kinds of prey.

(In the figure, many of predator-prey nodes loop back on themselves. “That,” says Anela, “is cannibalism—species within those broad animal groups feeding on one another.”)

There’s more to come

“Our method gives you a totally different view of the interactions going on in the food web,” Steve Haddock says.

The transparent bodies of animals like this medusa jelly let researchers peek into their guts and discover what they’ve been eating — in this case, a red mysid shrimp. Photo © MBARI

It’s a bit like going from a map with only train tracks to one that includes highways, he says: “You feel like things are connected in only a certain way, but suddenly you see these other connections. This study really complements and expands our view of what’s going on in the ocean.”

Still, Steve says there’s much left to learn.

“Even though this method has revealed a large diversity of interactions, there’s still a whole other universe of interactions we haven’t discovered,” he says.

The next layer of discovery may not come from video observations. Steve sees great promise in techniques like analyzing predators’ gut DNA for hints about their recent meals. Another avenue that is already widely utilized is compound-specific stable isotope analysis, which looks for chemical signatures that might accumulate in a creature’s tissue from eating certain prey.

Jellies often eat other jellies, as is the case with this red medusa preying on a siphonophore. Researchers documented some animals that fed on 20 or more prey species. Photo © MBARI

(That’s the approach used in a recent study by Aquarium researchers to document changes in North Pacific seabird diets over the past 130 years.)

“There will continue to be a lot more revelations about food web connections,” Steve says.

Anela agrees: “You hear that the deep sea is like outer space—it’s so poorly known and so poorly explored, every time we go down there we learn new things. All of that is true. But really, understanding that food webs tie everything in the ocean together is the reason I study them.”

Our ever-growing understanding of those connections, she says, will be critical to stewarding the ocean in the future.

—Daniel Potter

Choy, C.A., Haddock, S.H.D., Robison, B.H. (2017). Deep pelagic food web structure as revealed by in situ feeding observationsProceedings of the Royal Society B. 284: 20172116, doi: 

Science on the front lines of ocean acidification

Life seems easy for the little red tuna crabs delighting Monterey Bay Aquarium visitors. The temperature and water chemistry in their exhibit are carefully controlled and stable. In the wild, it’s a different story. Conditions are changing—fast. Crabs and other critters are in a race with time, as record levels of atmospheric carbon dioxide (CO2) warm the planet and change ocean chemistry.

Our colleagues at the Monterey Bay Aquarium Research Institute (MBARI) are on the front line, documenting the impacts and identifying potential solutions for this serious threat to ocean health.

CO2 bubbled up slowly

For more than a century, scientists have known that burning fossil fuels warms our planet. They’ve also long been aware of another impact—this one affecting ocean chemistry.

In 1909, a brewery chemist discovered that CO2 both creates bubbles when it’s dissolved in liquid, and makes it more acidic.

In 1909, a chemist at the Carlsberg Brewery Laboratory discovered that CO2 dissolved in water not only creates tiny bubbles (like in beer). It also makes liquid more acidic. In other words, our burning of fossil fuels is changing the chemistry of the ocean, a process called ocean acidification.

The impact of rising atmospheric CO2 developed slowly and subtly. By the 1960s, however, climatologists began raising alarms. Decades later, Al Gore’s landmark book and movie, An Inconvenient Truth, framed climate change as an urgent threat to human survival. As the scientific community worked to build accurate models of climate dynamics and explore ways to deal with rampant carbon, some eyed the ocean—which absorbs 25 percent to 30 percent of the excess CO2 in the atmosphere—as a solution. Could we stash even more atmospheric carbon in the sea, sparing the planet the worst impacts of global warming? Continue reading Science on the front lines of ocean acidification