Conservation & Science

How do you tag a jellyfish?  

They’re so soft—so squishy! Where to put a tag—and why bother? Questions like these moved scientists from the Monterey Bay Aquarium, the Monterey Bay Aquarium Research Institute (MBARI), Hopkins Marine Station and other institutions around the world to publish the first comprehensive how-to tagging paper for jellyfish researchers everywhere. This missing manual was long in the making

A wild sea nettle swims off Point Lobos near Carmel. Photo ©Bill Morgan

Tommy Knowles, a senior aquarist at Monterey Bay Aquarium, explains why.  Historically, ocean researchers demonized jellies as “blobs of goo that hurt you,” and that interfered with scientific gear. That changed in the  latter part of the 20th century as scientists grew keen to understand entire ecosystems, not just individual plants and animals. Knowing who eats what, how, where and when, they learned, is critical for conservation.

Jellyfish, however, remained a very under-appreciated member of the ecosystem for years, largely because so little was known about them.

Senior Aquarist Tommy Knowles and his colleagues work in the lab and in the filed to advance jellyfish science. Photo by Monterey Bay Aquarium/Tyson Rininger

“People didn’t know how to keep them alive in the lab or even on the boat,” says Knowles. Today, the field is coming into its own at a time when climate change has added urgency to the need to understand ecosystems in order to preserve ocean health.

A growing subject of interest

Understanding jellies is a concern for fisheries managers, too, since some jellyfish species prey upon the young and compete for food with the adults of commercially important fish. Other jellies impact tourism when blooms of stinging species foul beaches.

It’s not all negatives. We know that jellyfish play important roles in healthy marine ecosystems, by sheltering juvenile fish and crabs under their swimming bells, and nourishing hundreds of ocean predators. Jellies are a significant food source for ocean sunfish (the largest bony fish on the planet) and the endangered Pacific leatherback sea turtle, California’s state marine reptile.

A barrel jellyfish (Rhizostoma octopus) is tagged by a diver with an accelerometer using the “cable tie” method. Courtesy Sabrina Fossette/NOAA

As with other marine species that live and travel underwater—out of sight of human researchers—electronic data tags are useful tools for tracking jellies’ movements. Which gets back to the question: Just how do you tag a jellyfish? Read more…

Designing an animal-friendly fin tag

For over two decades, Monterey Bay Aquarium and Stanford University have partnered to study some of the world’s most mysterious ocean predators at the Tuna Research and Conservation Center (TRCC). Some of the latest work to come from the TRCC include an innovative tuna tag design, and a paper recently published in the journal Science detailing the discovery of a hydraulic mechanism in tuna dorsal fins, which helps them swim with speed and precision.


In his office at Stanford University’s Hopkins Marine Station in Pacific Grove, California, Dr. Vadim Pavlov holds a pale, sleeve-like device. Its smooth lines and soft edges make it seem more like a child’s toy than a high-tech scientific product. He slips the device over a model of a dolphin dorsal fin and “swims” it around his office, mimicking a dolphin’s movements as it leaps and twists out of the water.

The device is a prototype of a new tag design intended to track top ocean predators, such as sharks and tunas, without using pins and bolts that penetrate the fin.

“Even when the dolphin leaps, the tag stays on,” Vadim says. “But, how did we do it?”

Form and function

Vadim is one of the world’s top experts in biomimetics: the science of translating natural phenomena, such as the flow of water over a dolphin’s dorsal fin, into useful technology.

For years, he’s been tackling the challenge of tagging and tracking wildlife in the open ocean. He wanted to provide “animal-friendly” tags as an alternative to the invasive bolt tags anchored into the fins of apex marine predators such as sharks, dolphins and tunas. For Vadim, that’s not just a scientific goal; it’s personal, inspired by his experience as a free diver. “I don’t like swimming with lots of gear, so I don’t think [animals] do either,” he says. “They are very sensitive to anything on their bodies.”

Fin flow
A traditional tag can cause drag on an animal as it swims through the water.

Traditional bolt tags, a key tool in marine animal field studies for the last half century, are kind of like an ear piercing. Researchers punch through the cartilage and collagen in the dorsal fin and attach tags that can help track the animals, or collect environmental data such as salinity, temperature, and depth.

“But over time, these bolt tags do not move with the animals,” Vadim explains. “They can alter the flow of water around the animal’s bodies, and can even cause animals to turn more in one direction over time,” he says. “The faster the animal swims, the greater the energy needed to override the drag.”

Smaller animals, such as harbor porpoises and juvenile dolphins and sharks, are especially susceptible to the pitfalls of traditional bolt tags. “There’s a conflict between the animal’s biology and the technological requirements of the tag,” says Vadim. “So my job became how to reconcile that disconnect.” Read more…

After a jubilant March for Science, we’re marching on for the ocean

Silicon Valley-Jennifer Matlock with Zoe Lofgren arriving at Plaza
The Aquarium’s Jennifer Matlock (fourth from left) heads up the March for Science Silicon Valley beside Congresswoman Zoe Lofgren and others. Photo © Monterey Bay Aquarium / Paul Sakuma

On Earth Day, April 22, people came together in more than 600 cities around the world to stand up for science. And Monterey Bay Aquarium was all-in, standing up for the power of science to protect our shared ocean.

At the Aquarium, to quote Executive Director Julie Packard, “science is in our DNA.” We use research to make discoveries about marine wildlife and ecosystems, to inform ocean conservation policy, and to inspire the next generation of ocean leaders. We believe that evidence-based science can inform decisions that make our world better.

To show our support, Aquarium staff marched for science in cities across the U.S., including Washington DC, Dallas, Las Vegas, San Francisco and Santa Cruz. We went international too, with staff marching in Brussels and Amsterdam.

Even our resident African penguins joined in with a “March of the Penguins for Science,” waddling through our Kelp Forest gallery while staff—and a Facebook Live audience (now at 2.5 million, and rising)—cheered them on.

Read more…

Using science to save ocean wildlife

The Monterey Bay Aquarium is a science-driven organization, and rigorous science underpins all of our public policy, research and education programs. Much of our research centers on marine life that visitors can also see in our exhibits – from sea otters to sharks and tunas, even our giant kelp forest. Here’s some of what we’ve learned over the past 30-plus years that is contributing to conservation of key ocean species and ecosystems.

A sea otter works to crack a mussel shell open on a rock off the coast of Moss Landing, California. Photo by Jessica Fujii

Sea otters crack open tool-use secrets

Revolutionary female scientist Jane Goodall was the first person to discover that chimps use tools and live within complex social systems. Our team of female researchers are walking in Jane’s footsteps with their recent studies on use of tools by another mammal: the sea otter. When observing sea otters along the Monterey Peninsula, sometimes we can hear a “crack, crack, crack!” above the roar of the tide. That sound comes from sea otters using rocks and other tools to open prey items, such as crabs or bivalves, as they float on their backs. Sea otters are avid tool users, but until recently not much was known about how sea otters choose their tools, what aspects of their environments influence tool use, or whether they teach tool use to other otters. The Aquarium’s decades of research into sea otter behavior provided years of observations of sea otter foraging and tool-use behavior, including sea otter pups pounding empty fists against their chests. Could such activity be instinctual? Research Biologist Jessica Fujii has devoted much of her young career to studying the frequency and types of tools used and whether tool use can be coded in sea otter genes. Jessica is looking ahead to see how sea otters learn, teach, and eventually master tool use in the wild.

A sea otter rests in an eelgrass bed in Elkhorn Slough National
Estuarine Research Reserve. Sea otters contribute to the recovery of eelgrass and ecosystem health in this vital wetland on Monterey Bay. Photo by Ron Eby.

Sea otter surrogacy helps restore Elkhorn Slough

With 15 years of experience rescuing, rehabilitating, and then releasing surrogate-reared sea otters into Elkhorn Slough, an estuary near Moss Landing, California, the sea otter research team at the Aquarium began to wonder how and if their work was affecting the otter population there. Does releasing a few animals into the slough each year really make any difference? After crunching some serious numbers from the surrogacy program and the U.S. Geological Survey’s (USGS) annual sea otter census, the researchers discovered that it did. Nearly 60 percent of the 140 or so sea otters living in Elkhorn Slough today are there as a result of the Aquarium’s surrogacy program. While we’d known that sea otters served as ecosystem engineers for the giant kelp forests in Monterey Bay, we have now documented that sea otters in Elkhorn Slough are restoring the health and biodiversity of the estuary. This gives us further insights into how sea otters may contribute to coastal ecosystem resilience. Read more…

For deep-ocean science, nothing beats being there

Today’s guest post on the importance of ocean science comes from Nancy Barr of the Monterey Bay Aquarium Research Institute (MBARI), our partner institution.

deep-sea
Creatures of the deep sea. Photo © MBARI

The casual observer of the ocean might notice day-to-day changes in the waves and currents, or in the water’s color or smell. But how do we know what is going on far below the surface, if we are not there to observe it?

One key focus of MBARI technology development is to create a “persistent presence”—being where changes are taking place, as they happen. It means placing instrumentation in the deep ocean for extended periods of time, instead of relying on the occasional research cruise to make observations and collect data.

Tracking seafloor movement

frame-recover-ondeck
First Mate Paul Ban assists with the recovery of a tripod frame onto the R/V Rachel Carson, Photo by Roberto Gwiazda © MBARI 2017

Sediment moves from the continents into the deep sea both gradually, and in large bursts. This movement plays an important role in providing nutrition to deep-sea organisms. But it can also harm seafloor infrastructure, like underwater Internet cables—and it could possibly trigger geohazards like tsunamis.

MBARI engineers and scientists devised several instruments to record sediment-moving events as they happen. For the past two years, MBARI scientist Charlie Paull and an international research team have been monitoring movement in Monterey Canyon with a suite of instruments and sensors. The effort proved its worth in 2016, when the instruments detected a movement so strong, it swept a large volume of sediment down the canyon—carrying a one-ton steel tripod more than 3 miles down the canyon and burying it deep in the mud.

Read more…

Our commitment to science: white shark research

Monterey Bay Aquarium has since its inception affirmed that we are a science-driven organization, and that science underpins all of our public policy, research and education programs. That’s why we’re a partner with the national March for Science, a series of more than 500 events around the world on April 22.

As part of our commitment to the scientific process, our white shark research team works to understand and conserve these vital ocean predators. In advance of the March for Science, we’re taking a look at many of our scientific initiatives—in research, policy and education. Here’s a look at some of our recent white shark science highlights.

Annual Field Research

Every fall for the last decade, the Aquarium’s white shark research team has headed out to the Farallon Islands off the coast of San Francisco to tag, track, and identify white sharks as they feed on elephant seals and sea lions. The team observes behavior, captures underwater video, and deploys electronic tracking tags that relay information about white shark migrations and habitat preferences. When the team returns to the lab, they combine and analyze all these data to better understand white shark populations and their role in maintaining the healthy ocean ecosystems that ultimately support all life on Earth.

Read more…

We’re lacing up for the March for Science

Try to imagine one morning without science. You’d have no cell phone alarm to wake you up; no clean running water for your shower; no electricity to power your coffee maker. No weather forecast to help you plan your day.

We have science to thank for so many of the benefits of modern life, from our medicines to our food supply to our smartphones. Science also holds the promise of addressing our planet’s most serious environmental challenges. Innovations in renewable energy and clean vehicles can slow the pace of climate change. Rigorous research can better equip us to address the growing problem of plastic pollution in our ocean.

RW09-158
Scientists with the Aquarium’s Sea Otter Program release a rescued sea otter back into the wild.

At Monterey Bay Aquarium, science is at the core of our mission to inspire conservation of the ocean. That’s why we’re one of the first 100 partners in the national March for Science, a series of nearly 500 coordinated events across the United States and around the world on Saturday, April 22. Other partners include the American Association for the Advancement of Science (AAAS), American Geophysical Union, Ecological Society of America, Society for Conservation Biology and Union of Concerned Scientists.

“The world is too interconnected, and the issues are too complex, to make decisions without the input of science,” says Kyle Van Houtan, the Aquarium’s science director.

TR16-13491
Aquarist Jennifer O’Quin Anstey checks in on baby seahorses (Hippocampus ingens) in the Aquarium’s lab.

Over the next two weeks, on this blog and through our Twitter and Facebook feeds, we’ll share more about how science contributes to ocean health. We’ll highlight research that’s leading to exciting discoveries about ocean wildlife, and science-based programs transforming the market for sustainable seafood.

We’ll celebrate science education programs that empower young people from diverse backgrounds to become citizen scientists and the ocean conservation leaders of the future. We’ll highlight policy work in support of science-based decision-making, and breakthroughs in deep-sea exploration.

This Earth Day, April 22, the movement will go global as people from all walks of life come together to stand up for science. Advocates in Washington, D.C., will be joined by people at satellite marches on six continents, celebrating science—and their hope for our shared future—with one voice.


Find a March for Science near you.

 

%d bloggers like this: